Хранилища данных - статьи




Подготовка данных


На этапе подготовки данных аналитик готовит набор данных, содержащий достаточно информации, для того чтобы создать точные модели на последующих этапах. В случае с FSC, точная модель должна помочь прогнозировать, с какой вероятностью клиент купит продукты, рекламируемые в новом каталоге. Поскольку эти прогнозы основаны на факторах, потенциально влияющих на покупки клиентов, множество данных в модели будет включать в себя всех клиентов, отреагировавших на рассылаемые по почте каталоги за последние три года, их демографическую информацию, десять самых дорогих продуктов, которые приобрел каждый клиент, а также информацию о каталоге, послужившем стимулом для этих покупок.

Подготовка данных может включать в себя сложные запросы с объемными результатами. К примеру, подготовка множества данных FSC предусматривает соединение таблицы клиентов и таблицы продаж, а также выявление 10 самых дорогих покупок для каждого клиента. Все эти вопросы, касающиеся эффективной обработки запросов для поддержки принятия решения, одинаково актуальны в контексте добычи данных. Фактически, платформы добычи данных используют реляционные серверы или серверы OLAP для решения своих задач по подготовке данных.

Как правило, добыча данных включает в себя итеративно создаваемые модели на основе подготовленного множества данных, а затем применение одной или нескольких моделей. Поскольку создание моделей на больших множествах данных может оказаться весьма дорогостоящим, аналитики часто сначала работают с несколькими выборками множества данных. Платформы добычи данных, таким образом, должны поддерживать вычисления на случайно выбранных экземплярах данных в сложных запросах.




Содержание  Назад  Вперед