В рамках метода анализа иерархий нет общих правил для формирования структуры модели принятия решения. Это является отражением реальной ситуации принятия решения, поскольку всегда для одной и той же проблемы имеется целый спектр мнений. Метод позволяет учесть это обстоятельство с помощью построения дополнительной модели для согласования различных мнений, посредством определения их приоритетов. Таким образом, метод позволяет учитывать «человеческий фактор» при подготовке принятия решения. Это одно из важных достоинств данного метода перед другими методами принятия решений.
Формирование структуры модели принятия решения в методе анализа иерархий достаточно трудоемкий процесс. Однако в итоге удается получить детальное представление о том, как именно взаимодействуют факторы, влияющие на приоритеты альтернативных решений, и сами решения. Как именно формируются рейтинги возможных решений и рейтинги, отражающие важность факторов. Процедуры расчетов рейтингов в методе анализа иерархий достаточно просты (он не похож на «черный ящик»), что выгодно отличает данный метод от других методов принятия решений.
Сбор данных для поддержки принятия решения осуществляется главным образом с помощью процедуры парных сравненийMethodUse_TwineCompare. Результаты парных сравнений могут быть противоречивыми. (Метод предоставляет большие возможности для выявления противоречий в данных.) При этом возникает необходимость пересмотра данных для минимизации противоречий. Процедура парных сравнений и процесс пересмотра результатов сравнений для минимизации противоречий часто являются трудоемкими. Однако в итоге лицо, принимающее решение, приобретает уверенность, что использующиеся данные являются вполне осмысленными.
В рамках метода анализа иерархий нет средств для проверки достоверности данных. Это важный недостаток, ограничивающий отчасти возможности применения метода. Однако метод применяется главным образом в тех случаях, когда в принципе не может быть объективных данных, а ведущими мотивами для принятия решения являются предпочтения людей.
При этом процедура парных сравнений для сбора данных практически не имеет достойных альтернатив. Если сбор данных проведен с помощью опытных экспертов и в данных нет существенных противоречий, то качество таких данныхMethodUse_CheckQuality признается удовлетворительным.
Схема применения метода совершенно не зависит от сферы деятельности, в которой принимается решение. Поэтому метод является универсальным, его применение позволяет организовать систему поддержки принятия решений.
Работа по подготовке принятия решений часто является слишком трудоемкой для одного человека. Модель, составленная с помощью метода анализа иерархий, всегда имеет кластерную структуру. Применение метода позволяет разбить большую задачу, на ряд малых самостоятельных задач. Благодаря этому для подготовки принятия решения можно привлечь экспертов, работающих независимо друг от друга над локальными задачами. Эксперты могут не знать ничего о характере принимаемого решения, что отчасти способствует сохранению. В частности, благодаря этому удается сохранить в тайне информацию о подготовке решения.
Метод дает только способ рейтингования альтернатив, но не имеет внутренних средств для интерпретации рейтингов, т.е. считается, что человек, принимающий решение, зная рейтинг возможных решений, должен в зависимости от ситуации сам сделать вывод.) Это следует признать недостатком метода.
Данный метод может служить надстройкой для других методов, призванных решать плохо формализованные задачи, где более адекватно подходят человеческие опыт и интуиция, нежели сложные математические расчеты. Метод дает удобные средства учета экспертной информации для решения различных задач.
Метод отражает естественный ход человеческого мышления и дает более общий подход, чем метод логических цепей. Он дает не только дает способ выявления наиболее предпочтительного решения, но и позволяет количественно выразить степень предпочтительности посредством рейтингования. Это способствует полному и адекватному выявлению предпочтений лица, принимающего решение.Кроме того, оценка меры противоречивости использованных данных позволяет установить степень доверия к полученному результату.