Данные
1) Приоритет узла в кластере – положительное число, служащее для количественного выражения важности (веса, значимости, предпочтительности и т.п.) данного узла в кластере относительно остальных узлов кластера в соответствие с критерием, заключенным в вершине кластера. Сумма всех приоритетов узлов кластера равна единице. Поэтому часто приоритеты можно трактовать как вероятности, доли общего ресурса и т.п. в зависимости от рассматриваемого случая.
Часто трудно непосредственно определить набор приоритетов (вектор приоритетов) узлов кластера. Тогда используется процедура парных сравненийMethodUse_TwineCompare и метод собственного вектораRules_EigenVectorMethod.
2) Пaрные сравнения узлов кластера – оценки (качественные или количественные) отношения приоритета одного узла к приоритету другого, т.е. результаты парных сравнений – это оценки важности (предпочтительности, вероятности и т.п.) каждого узла кластера относительно каждого из других по критерию, заключенному в вершине кластера. Результат парного сравнения – оценка отношения «весов» сравниваемых объектов («веса» объектов численно выражают их предпочтительность, оптимальность, значимость и т.п.). Цель парных сравнений – определение приоритетов узлов кластера. Для того, чтобы уточнить, в каком смысле название вершины кластера является критерием для проведения сравнений используется формулировка критерия для парных сравненийAdvice_TwineCompareCriterion.
Для проведения парных сравнений задаются параметры: шкала сравнений и способ сравнений. При проведении парного сравнения объектов
и
достаточно установить только один из результатов
(оценка отношения «веса» объекта
и весу объекта
) или
, так как
.
3) Шкала сравнений – упорядоченный набор градаций (терминов, чисел и т.п.) для выражения результатов парных сравнений. Шкала сравнений позволяет выражать оценки отношений значений приоритетов узлов, поэтому ее деления – безразмерные величины. Шкалы, использующиеся в методе анализа иерархий, являются шкалами отношений.
Т.е. если результату сравнения пары объектов ставится в соответствие значение
на шкале, то число
- оценка отношения «весов» объектов («веса» объектов численно выражают их предпочтительность, оптимальность, значимость и т.п.Examples_Test2).
Шкала является количественной, если результаты парных сравнений выражаются непосредственно с помощью чисел.
Шкала является качественной, если результаты парных сравнений выражаются с помощью с градаций-предпочтений. Градациям качественных шкал, использующихся в методе анализа иерархий, соответствуют числа.Т.е. качественные шкалы предоставляют возможность опосредованного оценивания приоритетов через предпочтения. Дискретная шкала имеет конечных набор градаций (при переходе от одной градации к другой значение парного сравнения изменяется скачком).
Дискретной шкале соответствует конечный набор чисел. Дискретные шкалы отличаются по величине наибольшего значения (при количественных сравнениях) или по количеству основных градаций (при качественных сравнениях).
Если число
- верхний предел шкалы, то
- нижний предел шкалы, т.е. все результаты парных сравнений, выраженные в такой шкале, лежат в пределах от
до
. Если результату сравнения пары объектов соответствует единица, то значения «весов» объектов оцениваются как равные. Кроме того, для дискретной шкалы
- количество градаций для выражения превосходства одного из сравниваемых объектов над другим. При этом дискретная шкала имеет градации
. В качестве градаций непрерывной шкалы может использоваться любое из действительных чисел от
до
.
Непрерывная шкала имеет непрерывный набор градаций (между основными делениями шкалы есть всевозможные промежуточные). Градациям непрерывной шкалы соответствуют числа на отрезке числовой прямой. Непрерывные шкалы отличаются по величине наибольшего значения (при количественных сравнениях) или по количеству основных градаций (при качественных сравнениях). Если «вес» объекта
оценивается как превышающий «вес» объекта
, результату
парного сравнения объектов
и
соответствует значение на шкале, большее единицы.
В противном случае
лежит на шкале слева от единицы. В соответствии с этим правилом осуществляется и перевод градаций качественных шкал в числовые значения.
4)
Способ сравнений определяется набором парных сравнений, необходимых для определения приоритетов узлов кластера. При сравнениях с эталоном (по Стивенсу) выбирается один из узлов кластера, с которым сравниваются все остальные. При проведении классических сравнений (по Саати) каждый узел кластера сравнивается со всеми остальными узлами кластера.
5)
Сравнения кластеров - процедура оценки важности (приоритетности, силы подчинения) кластеров, имеющих общую вершину.
Кластеры сравниваются друг с другом по критерию, заданному названием их вершины. Для проведения сравнений используется та же методика, что и для сравнений узлов в кластере.
Фактически при сравнении кластеров, подчиненных одному узлу, производится рейтингование уровней по критерию, определяемому этим узлом.
6)
Матрица сравнений – таблица числовых значений парных сравнений (для узлов кластера или для кластеров, имеющих общую вершину).
7)
Индекс согласованности – количественная оценка противоречивости результатов сравнений (для системы в целом, для узлов одного кластера или для кластеров, имеющих общую вершину). Следует иметь в виду, что между достоверностью и непротиворечивостью сравнений нет явной связи. Противоречия в сравнениях возникают из-за субъективных ошибок экспертов. Индекс согласованности не зависит от шкал сравнений, но зависит от количества парных сравнений. Индекс согласованности – положительное число. Чем меньше противоречий в сравнениях, тем меньше значение индекса согласованности. При использовании способа сравнений с эталоном значение индекса согласованности равно нулю.
8)
Достоверность результата сравнения – количественной оценка, характеризующая степень неточности (размытости) результата сравнения, связанная с компетентностью эксперта, уровнем доверия к данным и т.п. Достоверность сравнения выражается долей единицы (или в процентах).
Нулю соответствуют абсолютно недостоверные сравнения, единице (или 100%) – абсолютно достоверные сравнения. На основе значений достоверности сравнений для кластеров, имеющих общую вершину, и значений достоверности парных сравнений в кластерах определяется достоверность данных в масштабах всей системы.
9)
Относительная согласованность матрицы сравнений– отношение индекса согласованности к среднестатистическому значению индекса согласованности при случайном выборе коэффициентов матрицы сравнений. Относительная согласованность для системы в целом характеризует взвешенное среднее значение относительной согласованности по всем матрицам сравнений.
Данные можно считать практически непротиворечивыми (достаточно согласованными), если значение относительной согласованности меньше чем 0,1. Это заключение справедливо как для данных кластера, так и для данных в масштабе всей системы.
10)
Идеальные сравнения – наиболее близкие к имеющимся непротиворечивые результаты сравнений.
Идеальным сравнениям соответствуют нулевой индекс согласованности и, соответственно, нулевое значение относительной согласованности.
Знание идеальных сравнений используется при проведении процедуры согласования для кластеровAdvice_CoordinateKlaster, позволяющей скорректировать сравнения для уменьшения их противоречивости.
11)
Наиболее противоречивые сравнения – это результаты нескольких парных сравнений узлов одного кластера или кластеров, имеющих общую вершину, вносящие наибольший вклад в значение относительной согласованности.
Содержание раздела